Central polynomials for matrix algebras over the Grassmann algebra

نویسندگان

  • S. M. Alves Jorge
  • A. C. Vieira
چکیده

In this work, we describe a method to construct central polynomials for F -algebras where F is a field of characteristic zero. The main application deals with the T -prime algebras Mn(E), where E is the infinitedimensional Grassmann algebra over F , which play a fundamental role in the theory of PI-algebras. The method is based on the explicit decomposition of the group algebra FSn. AMS Classification 2000: Primary 16R10, Secondary 16W50, 15A75.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix representations of finitely generated Grassmann algebras and some consequences

We prove that the m-generated Grassmann algebra can be embedded into a 2 × 2 matrix algebra over a factor of a commutative polynomial algebra in m indeterminates. Cayley–Hamilton and standard identities for n× n matrices over the m-generated Grassmann algebra are derived from this embedding. Other related embedding results are also presented.

متن کامل

A Grassmann integral equation

The present study introduces and investigates a new type of equation which is called Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann (Berezin) integrations and which is to be obeyed by an unknown function over a (finite-dimensional) Grassmann algebra Gm (i.e., a sought after element of t...

متن کامل

Grassmann Variables in Jordan Matrix Models

Here we demonstrate the emergence of Grassmann variables in matrix models based on the exceptional Jordan algebra. The Grassmann algebras are built naturally using the octonion algebra. We argue the appearance of Grassmann variables solidifies the relationship between supersymmetry and triality.

متن کامل

Arens Regularity and Weak Amenability of Certain Matrix Algebras

Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...

متن کامل

Modular adjacency algebras of Grassmann graphs

The adjacency algebra of an association scheme is defined over an arbitrary field. In general, it is always semisimple over a field of characteristic zero but not always semisimple over a field of positive characteristic. The structures of adjacency algebras over fields of positive characteristic have not been sufficiently studied. In this paper, we consider the structures of adjacency algebras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011